

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: BE (13A03701) Course & Branch: B.Tech - CE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R13

<u>UNIT –IV</u>

PLATE GIRDER BRIDGE & COMPOSITE BRIDGES

- 1. A deck type welded plate girder railway bridge is to be constructed for a broad gauge single track on the main line. Effective span=20m, c/c distance between plate girders=2m, Dead Load on each girder= (220L+600) N/m, Dead load of track with sleepers=6800 N/m. Design the superstructure of the bridge with welded plate girders.
- 2. Explain the step by step design procedure of the welded plate girder bridge.
- 3. Explain the various components of the plate girder bridge along with the design procedure.
- 4. List any seven elements of the plate girder bridge & explain its important features related to the design.
- 5. The plate girder is to be designed for B.G. Track to suit the following data:

Effective span of the girder = 30 mDead load of track (open floor) = 7.5 kN/mE.U.L.L. for BM calculations/track = 2727 kN

Design the plate girder bridge & sketch the details of longitudinal & cross-sections.

- 6. (a) List the different types of shear connectors used in the composite bridge
 - (b) Explain the shear connector design in the composite bridge.
- 7. Design the plate girder to conform to the IRS loadings and IRC specifications. Sketch the typical c/s of the bridge deck.
- 8. Design a deck type welded plate girder bridge for the following data: Effective span=20m, c/c distance between plate girders=2m, dead load on each girders =8kN/m, dead load of track with sleepers=6.5kN/m.
- 9. Write the advantages of the composite bridge. Briefly explain the behavior of the composite bridge.
- 10. A) List the different types of connectors used in the composite bridge.
 - B) What is the purpose to provide the shear connectors in the composite bridge?
 - C) List out the elements of the plate girder.
 - D) Write the advantages of composite bridges.
 - E) Define plate girder.

Prepared by: M.MANIKANTAN

Name of the Subject Page 1

Course & Branch: B.Tech - CE

Regulation: R13

Page 1

Name of the Subject

Subject with Code : BE (13A03701)

Year & Sem: IV-B.Tech & I-Sem

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

1.	The Plate girder brid	ges are the most comm	non type of b	oridges []
	(A) Concrete	(B) Steel	(C) Wooden	(D) None	,
2.	The Plate girder brid	ges are generally used	for railway crossings of	of []
	(A) Streams	(B) Rivers	(C) Both A & B	(D) None	
3.	The Plate girder brid	ges are adopted for sin	nply supported spans ir	n the range of []
	(A) 10 to 50m	(B) 10 to 20m	(C) 20 to 50m	(D) 20 to 60m	
4.	The Plate girder brid	ges are adopted for con	ntinuous span up to]]
	(A) 100m	(B) 250m	(C) 150m	(D) 200m	
5.	5. The self-weight of girder may be assumed as				
	(A) $(0.2L+1)$ kN/m	(B) $(0.3L+1) \text{ kN/m}^2$	(C) $(0.5L+1)$ kN/m	(D) None	
6.	The depth of web gir		_	[]
	(A) D = $\frac{5M}{\sigma_b}$	(B) $D = 5 \sqrt[3]{\frac{M}{\sigma_b}}$	(C) D = $5\sqrt[4]{\frac{M}{\sigma_b}}$	(D) None	
7.	The thickness of web	not less than		[]
	(A) 6mm	(B) 7mm	(C) 8mm	(D) 9mm	
8.	The flange width ma	y be taken as]]
	$(A) \frac{L}{40} \text{ to } \frac{L}{42}$	(B) $\frac{L}{42}$ to $\frac{L}{50}$	(C) $\frac{L}{42}$ to $\frac{L}{48}$	(D) $\frac{L}{40}$ to $\frac{L}{45}$	
9.	The maximum horizon	ontal shear forces give	n by	[]
	$(A) \tau = \frac{va\bar{y}^2}{I}$	(B) $\tau = \frac{V \alpha \overline{y}}{I}$	$(C)\tau = \frac{va\bar{y}^2}{2I}$	(D) None	
10			ediate stiffeners is give]
	(A) $I = \frac{1.5d^2t^2}{c^2}$	(B) $I = \frac{1.5d^2t^2}{c^2}$	(C) $I = \frac{1.5d^3t^3}{\epsilon^2}$	(D) None	
11	. The flange area can b	be calculated by		[]
	(A) $A_f = [M/(\sigma_b d)] - [A_f d] - [A_f d] - [A_f d]$	$A_w/6$] (B) A	$_{\rm f} = [2M/(\sigma_{\rm b}d)] - [A_{\rm w}/6]$		
	(C) $A_f = [M/(\sigma_b d)] - [A_f = [M/(\sigma_b d)] - [A_f$	$A_w/8$] (D) N	one		
12	. The lateral bracings	are designed to resist tl	ne]]
	* *	(B) Horizontal wind	, ,	, ,	B&C
13	. The outstand of stiffe		than, for rolled sec	ction []
	(A) 12t	(B) 13t	(C) 16t	(D) 17t	
14	-		ype ofbridge]
1.5	(A) Concrete	(B) steel	(C) wooden	(D) none	1
15	. Plate girder bridges (A) streams	(B) rivers	railway crossing of (C) both a &		J
	(A) su cams	(D) HVCIS	(C) 00 til a &	(D) Holle	

16. Plat	te girder bridges ar	e adopted for simply si	apported spans in t	he ranges of	[]	
(A)	10 to 50m	(B) 10 to 20m	(C) 20 to 5	0m (D) 20 t	o 60m		
17. Plat	te girder bridges ar	e adopted for continuo	us spans up to		[]	
(A)	100m	(B) 250 m	(C) 150m	((D) 200m		
18. Cro	ps bracings consis	ting of angles are prov	rided at the ends an	d at interval	s of[]	
(A)	1 to 2m	(B) 2 to 3m	(C) 3 to 4n	1 ((D) 4 to 5m		
19. Self	f weight of girder i	nay be as			[]	
(A)	(0.2L+1) KN/m	(B) $(0.2L + 2) \text{ KN/m}^2$	(C)(0.2L +	- 1) KN	(D)none		
20. Dep	oth of web girder is	s calculated by			[]]	
(A)	$D=5(\sqrt{m/\sigma_b})$	(B) D=5(3 \sqrt{m}/σ_b)	(C) $D=5(2^{-1})$	$\sqrt{m/\sigma_b}$)	(D) D= $5(\sqrt{w}/$	σ_b	
21. Thi	ckness of the web	not less than			[]	
(A)	6mm	(B) 7mm	(C) 8mm	((D) 9mm		
22. Flai	nge width may be	taken as			[]	
(A)	L/ 40 to L/40	(B) L/40 to L/50	(C) L/42 to	L/45	(D) $L/40$ to L	J /45	
23. Spa	cing of intermedia	te stiffness is 'c' not gr	eater than		[]	
(A)	0.5d	(B) 0.3d	(C) 1.5d	((D) none		
24. Max		shear force given by		_	[]	
(A)	$\tau = Vay_x/I_{xx}$	(B) $\tau = Vay/I$	(C) $\tau = Vay$	$^2/I$	(D)none		
25	deck co	mprises of a reinforced	l concrete continuo	us slab supp	orted by stee	el plate	
gird	lers.				[]	
(A)	Composite bridge	(B) Cantilever bridge					
(C)	Cable wire bridge	(D) Continuou	s bridge				
		s are economical in the	-		ſ]	
	10 to 15m		(C) 10 to 14m		10m	-	
` ′		the most important stru	, ,		[]	
	(A) Composite bridge deck (B) Continuous bridge						
) Cantilever bridge		-				
	28 type of composite bridges are welded to the shear connectors for providing a rigid						
	type or componection	site bridges are welded	to the shear conne	ctors for pro	oviding a rigi	u	
		(C) II t	vm (D)	All the che	,,, [1	
	C-type (B) I-ty	•		All the abo	=]	
		istance of one connecte	,	-	•	1	
, ,	$A_{st}\sigma_u 10^{-6}$	(B) $A_s \sigma_u 10^{-3}$	(C) $A_{st}\sigma_u 10^{-4}$	(D) $A_s\sigma$	$_{\rm u}10^{-2}$ []	
		economical in the span	•	1) 7	L]	
, ,	10 to 15m	(B) 10 to 20m	(C) 10 to 14m	d) 7 to 1		_	
	•	erall depth of the beams	s leads to saving in	lengths of a	ipproaches in	the	
case				4.]	
	Sub-grade	(B) excavation	(C) embankment	d) none	of these		
		ess at the inter face sho		N/mm ²	[]	
	2.01	(B) 2.12	(C) 2.13		(D) 2.	.1	
		ear connector is compu	•		[]	
` ′	$P=\sum Q/V_1$	(B) $P=\sum K/V_1$	(C) $P=\sum H/$		(D) none of t	hese	
	•	r [working or ultimate]	•	-]	
-	$V_L = V_{AC}X/I_{xx}\&V$		(C) $V_L = V_{A0}$		$= V_U A_U Z/I$		
	$V_L = V_{AC}Y/I$ & V		(D) none of				
35 Cha	ar connectors are t	he most important stru	ctural element in a	hridaea	Г	1	

Name of the Subject Page 1

	(A) Composite (B) co	ntinuous	(C) cantilever	(D) cable wire	e	
36.	Victor has reported th	nat flexural stiffness of	a composite beam will	l be about	-that for a	
	corresponding steel b	eam.			[]	
	(A)2 to 3 times	(B) 2 to 4 times	(C) 2 to 5 time	es (D) 2	to 6 times	
37.	Composite bridges de	eck comprises of a rein	forced concrete continu	uous slab supp	orted by	
	girder.				[]	
	(A) Steel plate	(B) concrete plate	(C)pre stressed concre	ete (D) A	Ill of these	
38.	This type of bridge de	eck provides for speedl	ly erection of the	girder	[]	
	(A) Fabricated	(B) pre fabricated stee	el (C) steel		(D) R.C.C	
39.	type of are welde	ed to the shear connecte	ors for providing a rigic	d connection.	[]	
	(A)C - type	(B) I − type	(C) U – type	(D) A	ll of these	
40.	The deflection of con	mposite section is	deflection of non-comp	posite section of	lue to increase	•
	in moment of inertia.				[]	
	(A) More than	(B) less than	(C) equal	(D) A	ll the above	

Prepared by: **M.MANIKANTAN**

Name of the Subject Page 1